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The inviscid instability of columnar vortex flows in unbounded domains to three- 
dimensional perturbations is considered. The undisturbed flows may have axial and 
swirl velocity components with a general dependence on distance from the swirl axis. 
The equation governing the disturbance is found to  simplify when the azimuthal 
wavenumber n is large. This permits us to  develop the solution in an asymptotic 
expansion and reveals a class of unstable modes. The asymptotic results are confirmed 
by comparisons with numerical solutions of the full problem for a specific flow 
modelling the trailing vortex. It is found that the asymptotic theory predicts the 
most-unstable wave with reasonable accuracy for values of n as low as 3, and 
improves rapidly in accuracy as n increases. This study enables us to formulate a 
sufficient condition for the instability of columnar vortices as follows. Let the vortex 
have axial velocity W(r ) ,  azimuthal velocity V ( r ) ,  where r is distance from the axis, 
let C? be the angular velocity V / r ,  and let r be the circulation r V .  Then the flow is 
unstable if 

1. Introduction 
We investigate the instability of incompressible inviscid concentrated vortex flows 

to infinitesimal three-dimensional disturbances. The method of analysis is novel and 
we expect that  i t  will be applicable to  other classes of flows as well. Our ultimate 
purpose is to determine the role played by hydrodynamic instabilities in the highly 
nonlinear phenomena, such as vortex breakdown (see Hall 1972 ; Leibovich 1978), 
that are known to occur in concentrated vortex flows. This paper, which deals 
specifically with unbounded vortex flows, is a step in this programme. 

The basic motion is assumed to have cylindrical symmetry, and to have a 
distribution of vorticity that decays with radial distance from the axis of symmetry. 
We illustrate our method by applying it to the one-parameter model of the trailing 
vortex 

(1.la) 

where V is the swirl velocity, W is the axial velocity and r is the radial distance from 
the symmetry axis, all quantities being expressed in a dimensionless form in a 
cylindrical coordinate system. The parameter q differentiating members of this family 
is essentially the maximum pitch angle of the helices on which fluid particles move 
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in the flow ( l . l ) ,  and, without loss of generality, we take i t  to  be positive. By a suitable 
Galilean transformation that does not affect stability considerations, (1 .1 )  can 
represent flows with an axial jet or momentum deficit (wake) near r = 0. It has been 
proposed as a representation for the behaviour of a trailing line vortex far downstream 
of a wing-tip (Batchelor 1964; Lessen, Singh & Paillet 1974) and there is some 
experimental support for the proposition (Singh & Uberoi 1976); it  is also known to 
be a good empirical fit to flows upstream of vortex breakdowns in certain experiments 
(Leibovich 1978; Faler & Leibovich 1977; Garg & Leibovich 1979; Escudier, 
Bornstein & Zehnder 1980). Although we centre our attention on this particular case, 
the methods that we develop and use here are general. 

The linear stability problem for this model of the trailing vortex (we refer to this 
model as TV hereafter) has been previously considered by Lessen et al. (1974) and 
their numerical results were extended by Duck & Foster (1980) using a different 
numerical method. The stability problem for a similar flow (representing Long’s 
vortex (Long 1958,1961)) has been investigated by Foster & Duck (1982), again using 
numerical methods. These studies indicate that the most dangerous modes are those 
with positive azimuthal wavenumber n (as defined in OUT §2), and that the growth 
rates, maximized with respect to axial wavenumber, increase with n, a t  least for the 
values (0 < n < 6) computed. This raises the question of whether there is a most- 
unstable mode a t  finite n, or whether the growth rate continues to increase 
monotonically with n. 

This fundamental question must be addressed by an asymptotic theory, and that 
is the central point of this paper ($4). We deal exclusively with positive n (for the 
reasons stated above). We find a class of unstable disturbances whose maximum 
growth rate indeed increases monotonically with n and approaches a limit as n --t co . 

Furthermore, our asymptotic theory predicts this maximum growth rate accurately 
a t  moderate values of n (the error being about 10% at n = 2, 3 %  a t  n = 3, and 
decreasing rapidly as n increases). The unstable modes found are associated with 
either one or two critical levels, and when n 9 1 are concentrated in a neighbourhood 
of a finite value r,, of r : they may therefore be thought of as ring modes. Their structure 
is different from those wall modes, which have a single critical level near the wall, 
recently found by Maslowe & Stewartson (1982) for rigidly rotating Poiseuille flow 
in a pipe. It seems likely that both ring and wall modes can arise in concentrated 
vortex flows contained in tubes. Furthermore, by the nature of the asymptotic 
analyses developed by Maslowe & Stewartson (1982) and here, the two sets of modes 
are independent for large n, and can be treated separately. 

I n  order to substantiate our asymptotic theory, WE‘ have supplemented the 
numerical calculations done by Lessen et al. (1974) and by Duck & Foster (1980). 
These authors do not present data on the real part of the frequency (except for 
In1 = l ) ,  neutral modes, or marginal stability. Our numerical studies, which focus on 
values of n larger than 3, are the subject of $3. We find that many modes are close 
together, particularly near neutral conditions, and that this makes numerical 
computation very difficult. This peculiarity is elucidated by the asymptotic theory. 

Our numerical results for the TV model indicate that there is a value of q above 
which all modes are stabilized. This marginal value is approximately 1.6; this is not 
inconsistent with Lessen et al. (1974), who reported that the marginal value was 
‘slightly greater than 1.5 ’. The straightforward asymptotic theory for strongly 
unstable modes does not hold for values of q > 4 2 ,  but can be extended into this 
range. This extension, together with our numerical results for marginal stability, will 
be presented in a further paper dealing with the treatment of neutral modes. Here 
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we only note that the extended asymptotic theory accurately predicts the critical 
value of q for marginal stability for n as low as 3. 

Our problem is formulated in $ 2 .  Results of a general nature derivable from a 
theorem of semicircle type due to Barston (1980), and an improved bound on all 
growth rates for the system, are also presented there. 

In  $5 we derive a suficient condition for instability of concentrated vortex flows 
in unbounded domains to three-dimensional disturbances based upon our asymptotic 
theory. We find the flow is unstable if 

(1.2) 2 VDR [D(r V) (on) + (D W ) z ]  < 0. 

Here r is the radial distance from the symmetry axis, V and W are the azimuthal 
and axial velocity components of the basic flow, R = V / r  is the corresponding 
angular velocity, and D( ) indicates differentiation with respect to  r .  This result is 
consistent with experimental evidence for flow in tubes (Leibovich 1978). It is worth 
noting that (1.2) is close in form to a criterion for instability found by Ludwieg (1961) 
for inviscid swirling flow in a narrow annular gap. Ludwieg's result, however, 
indicates instability for all q and is therefore not in agreement with observation. 

2. Formulation and general results 
We suppose an incompressible inviscid fluid filling all space has velocity vector 

(0, V(r ) ,  W ( r ) ) ,  where ris the radial coordinate in a cylindrical ( r ,  8, z )  coordinatJe system, 
V ( r )  is the azimuthal and W the axial velocity component. A reversal of the sign of 
17 implies instability (Rayleigh's criterion) if W = 0, and very likely if W + 0 as well, 
and so we shall assume that V(r )  is positive. The perturbation (u', v', w') is assumed 
to be of the form 

(u', d, w') = (u ( r ) ,  v ( r ) ,  w( r ) )  exp [i (az-n8-wt)] ,  (2.la) 

where w is a (complex) constant to be found and a is a real constant, which, without 
loss of generality, we take to be positive; n is an integer (often written in the literature 
as - m). Howard & Gupta (1962) show that the Euler equations for the perturbation 
velocity may be reduced to the following equation for the amplitude u ( r )  of the radial 
disturbance : 

y2DSD,u-{y2+yn-'a(r) +b(r ) }u  = 0, (2.lb) 
where 

(2 . lc )  

S = r2(n2+a2r2)-', (2.ld) 

(2.1 e) 

n V  
r 

y = a w - p - w ,  w = W , + i W i ,  

a(r)  = nrD[S(D,(y/r)  - 2nrP3 V ) ] ,  

b ( r )  = - 2a Vr3!3[arD,  V+ n D W ] ,  ( 2 .  I f )  

4 ) i d  
dr r dr D( ) =-, D*( ) = - - [ r (  )I. 

The boundary conditions on u are 

u+O as r + m .  (2 .2c )  
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N’e assume that all quantities appearing in (2.1) and (2.:2) are dimensionless, having 
been normalized with respect to a characteristic lengthscale and a characteristic 
velocity scale. The example that we trcat in detail is the trailing vortex, with velocity 
vomponcnts given by (1.1). 

2.1. RQsukq from Burston’s semicircle theorem 

Semicircle theorems, originated by Howard (1961), locate all unstable modes within 
a scmicircle in the complcx phase-speed ( c  = w / a )  plane. Howard & Gupta (1962) 
state a semicircle theorem for the axisymmetric (n  = 0) version of the present 
problem. Barston (1980) has proved generalized semicircle theorems which are 
applicable to our p-oblem. One of Barston’s results allows us to state that  all unstable 
modcs lie within a semicircle in the complex w-plane with centre a t  

0 0  = +(a, + a,) 
and radius no larger than 

w, = ~~+(a,-a,)12+max R2(r) ]+ ,  

where 

giving 

(2.4b) 

(2.4c) 

(2.4d) 

(2.4e) 

where we have assumed i 2 >  0. Let the subscript M denote the maximum over r ,  then, 
( 2 . 4 ~ )  and (2 .4e)  provide a convenient upper bound for w,: 

w, < +(a,-ul)+i2+ I ( ~ D R ~ ) ~ - Q ; I J .  (2 .5)  

For the trailing vortex, maxi2 = q and k = 1 ,  so (2.5) gives 

Urn < S(az-ai) + q 

in this case. If the radius of the semicircle were +(u,-a,), then this result would 
immediately show that all unstable modes must be associated with a t  least one critical 
level where y,(r) = 0. Since > 0, however, the radius of the present bound is larger, 
and we cannot therefore exclude the possibility of an unst<able mode without a critical 
level. However, in our studies of the trailing vortex, all unstable modes found have 
critical levels. For a different class of flows, viz r and W both linear in r2,  Warren 
(1978) has shown that unstable modes require at least one critical level. 

As n + 00, however, b, = a,/n and b, = a,/n are finite and not both zero, and w / n  
is ronfined to a semicircle whose radius is 

For the trailing-vortex example, the radius is less than t ( b ,  - b, )  + q/n. The semicircle 
theorem does not enable us to (.onelude that a critical level exists for any unstable 
modes as n -+ 00, but it shows a t  least that n-l yr ( r )  is O ( n - l )  at some level, and not 
O(  1) as i t  appears to be formally. This suggests the existence of unstable modes with 
w, = O ( l ) ,  and this is confirmed in 54. 

Several criteria of the Rayleigh type can be derived, following Howard & Gupts 
(l962), but none is very informative. Perhaps the most useful is the simplest, which 
states 
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F ~ B U K P  1. Upper bound M for the growth rate of the energy for a disturbance of arbitrary initial 
amplitude for the trailing-vortex model as a function of the swirl parameter q. 

It is easy to show that a 2 0 for all positive n, a in the trailing vortex provided q 2 t .  
Thus, for q 2 &, (2.7) implies that Y,. b is negative in some interval in these cams (recall 
that  the cases with n 2 0 are the most interesting ones so far as stability is concerned) 
if the flow is unstable. In particular, there can be no unstable modes if b vanishes 
identically, as it does for aq = n. The explicit formulae for a, b in the TV are given 
in (4.4) below. 

2.2.  An ouerall bound o n  the growth rate 

Semicircle theorems give useful bounds on the phase velocities, but not on growth 
rates. We shall provide a bound on growth rates here. 

We consider the growth of any disturbance, whether it be initially infinitesimal or 
finite, in an inviscid fluid. Assuming only that the disturbance is either periodic or 
Fourier-transformable in the z-direction, the following equation for the pcrturbation 
kinetic energy E holds : 

u . S . u d r  (2.8) - 1 dE _ _  
E dt - -zS, 

(this is a standard st’arting point of energy-stability theory, see Joseph 1976). Here 
T is the fluid volume within one period, in the event that periodicity is assumed, or 
all of space otherwise. In  (2*8), S is the rate-of-strain tensor of the basic blow, and 
u is the perturbation velocity vector. I n  our case 

(2.10) 

where M is the maximum eigenvalue of -2s. Thus the energy growth rate cannot 
exceed (2.11) 

regardless of the initial amplitude of the perturbation. Figure 1 gives M as a function 
of q for the trailing vortex. 



340 8. Leibovich and K. Stewartson 

We now conclude that all unstable modes are located in the complex w-plane in 
the intersection of the semicircle defined by (2.4) and the strip wi < +M defined by 
(2.9). Notice that M is independent of wavenumber, and therefore the maximum 
growth rate is certainly bounded as n --+ 00. 

3. Numerical determination of instability for the trailing vortex 
We have computed the eigenvalues of (2.1) for the trailing vortex for several values 

of q and for n = 1 , .  . . , 5  to supplement the computations of Lessen et al. (1974), with 
our most extensive results for n = 4 and 5. Our object is the computation of the 
dispersion relation, w = wr(a )  + io,(a) for the entire band of unstable wavenumbers 
for fixed values of q and n. Of particular interest is the neutral limit wi(a)  + 0 as 
a + a,; this has not been determined in earlier numerical solutions of this problem 
(Lessen et al. 1974; Duck & Foster 1980). 

The general considerations of 52 suggest (but do not prove) that yr = 0 for some 
value of r = rc < CCI for unstable modes, and that one should therefore expect a 
critical layer to exist for neutral modes as well. Although (2.1) fails to have a solution 
for w, = 0 ,  the limit (or limits) @,(a) + 0 as a + a, can be determined, as is well known, 
by invoking either viscous effects or by imagining (as we do) that  the problem arises 
in the course of seeking the large-time behaviour of an ini tial-value problem. To find 
these singular neutral modes, one then must deform the contour of integration by 
analytic continuation into the complex r-plane: if yr vanishes a t  r = rc ,  then the 
contour must pass above rc when Dy,(r,) < 0 and below it when Dy,(r,) > 0 (Lin 
1955). 

Deformation of the contour is the only way that strictly inviscid neutral modes 
can be computed, but it is also an important numerical expedient. Even for an w, 
that is not evidently ‘small’, unacceptably slow convergence of a numerical scheme 
may be encountered if the integration path is not deformed. The limits may also be 
found by invoking viscous effects, but additional difficulties may then arise (Cotton 
& Salwen 1981 ; Maslowe & Stewartson 1982). 

Assuming y(0)  =# 0, the Frobenius solution of (2.1) that  is bounded a t  the origin 
is O(rn-l)  as r + 0 for n 3 1 .  We solve (2.1) after making a transformation to a new 
dependent variable w through 

I n  this form, w has a finite slope a t  r = 0 that may be taken as unity without loss 
of generality. The primary solution method that we use is a multiple shooting 
technique, the SUPORE packaged developed a t  Sandia by Watts, Scott & Lord (1978) 
and their coworkers. 

We also employ a Galerkin method with Chebychev polynomials as basis functions. 
This method is satisfactory for unstable modes provided one does not approach 
neutral wavenumbers. Since i t  is a matrix method, no initial guess is required, and 
approximations for the first N eigenvalues are produced. We found the use of an 
entirely independent method, such as this, to be a valuable check and supplement 
to the shooting routines. This program, like that of Duck & Foster (1980), shows that 
there are many unstable modes for each q ,  a and n. Unfortunately, the advantages 
of the method are lost when the growth rate of the primetry mode (the one with the 
fastest growth rate) is small. The convergence rates become intolerably slow under 
these circumstances. I n  contrast with shooting methods, matrix methods do not 
isolate the singularity associated with the desired mode but must cope, in effect, with 
all modes and this, presumably, is the reason that they become less efficient when 

u = yn-2 w(+ (3.1) 



Instability of columnar vortices 34 1 

the growth rates are small. The discussion that follows applies only to the search for 
the primary mode using shooting procedures. 

As r --t 00, ( 2 . l b )  reduces to 
D(SD,U)  - u = 0. (3 .2)  

4 r )  = AD[&(ar) l ,  13.3) 

The solution of (3 .2)  that  is bounded a t  infinity is 

as noted by Lessen et al. (1974). The boundary conditions on w are 

w(0) = 0,  Dw(0) = 1, (3 .4a)  

w + O  as r + m .  (3.4b) 

Condition (3.4b) is implemented in one of two ways. I n  the first method, we simply 
set w(R,) = 0, where R, was taken to be large enough so that, to the tolerance 
specified, an increase in R, did not affect the computed eigenvalues. Duck & Foster 
(1980) provide some guidance here, and we found that R, = 4 was sufficient for the 
cases n = 4 and 5 that we considered. The second method exploits the asymptotic 
behaviour (3 .3) .  At r = R we set 

B, Dw(R,) + B, w(R,) = 0,  (3 .5a)  
where 

(3.5b) 

(3.5c) 

This joins the solution to its asymptotic form a t  r = R,; i t  is more efficient than 
setting w(R,) = 0, and reduces computing time by a t  least 25%. 

I n  view of the singularity at r = 0, the boundary condition (3 .4a)  is enforced by 
matching to a Frobenius solution in a small interval near r = 0. This is conveniently 
done without modifying the SUPORE package by using the series solution instead 
of the differential equation to evaluate Dw and D2w in this small interval. 

The geometry of the y,(r) graph shows that zero, one or two critical points in r > 0 
are possibilities. Numerical exploration reveals that y r  = 0 for a t  least one point rcl  
for some unstable wavenumbers, and a t  two points rcl and rc2 > rcl for all others. 
In  fact, wavenumbers having eigenvalues for which y r  < 0 at r = 0 have one critical 
point, while those for which y,(O) > 0 have two. We do not know a priori where the 
critical points are located. Consequently, when deformation of the contour is 
advisable owing to slow convergence of the iterative procedure used, or in the search 
for neutral modes, a path was chosen that is automatically displaced in the correct 
direction in the complex r-plane. The choice is 

r(x) = x l - i d  1-- Dy,(x) . [ ( a  1 (3 .6)  

Note that r ( 0 )  = 0, and r = R, a t  x = R,. 
The program was checked by comparison with our Galerkin routine, and also with 

results obtained by Lessen et al. (1974) and by Duck (private communication) using 
Duck & Foster’s (1980) program. The cross-checks were all satisfactory: Table 1 shows 
comparisons with Duck’s calculations and with Lessen et al. for n = 4. 

Numerical computations for nearly neutral wavenumbers are very difficult for an 
unexpected reason. As neutral conditions are approached, i t  appears that  the complex 
dispersion relations for different modes approach each other. Since they are in close 
proximity, more than one mode can become involved in the iteration process. Thus 
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W, Wr 
A 

I 7 A 
'I 

P a L) TAP 1, s u LSP LS 
- - 0 8  0 8 9  00254 0.02538 -2,1451 - 2.1 4505 

0915 00349 003483 -2.1113 - 2.1 1 1 24 
- 2.1 0461 
-1.17261 

- - - 

- - 0.920 00368 003684 -2.1046 - 

- - 0.82 2.15 0.3777 0.371 39 __ 

TABLE 1 .  Comparison with previous computations: D ++ Duck, LSP ++ Lessen et al., 
LS +--) present work; n = 4 in all cases 

(presumably) solutions of the differential equation can switch from an approximation 
to the eigenfunctions of the primary mode, to another approximating the eigen- 
function of one of the higher modes. If this occurs, and if there is convergencsc, then it 
may be to any of the modes involved in the iteration. 'Thus, when wi is very small 
for the primary mode, an  attempt to find the eigerivalues for a neighbouring 
wavenumber may yield negative wi. This would indicate stability and suggest that  
the neutral wavenumber has been bracketed, but may, on the contrary, mean only 
that one has found a higher mode, the primary mode still being unstable. 

The asymptotic analysis of $4 helps to explain this odd behaviour, and shows that 
in a sense things get even worse for large n. For n $ 1, we show in $4 that  there are 
a large number of unstable modes with complex frequencies that coincide to O(n-i) .  
This suggests that the neutral modes may be morc than 'difficult ' to compute for 
large n : unstable modes may be essentially uncomputable by straightforward 
numerical processes using the differential equation (2.1),  and perhaps should be 
computed using a form for the equation that incorporates the scaling of the 
asymptotic theory. 

The present results confirm the earlier numerical work, which show that the 
maximum growth rate increases with n for fixed q.  Hence the need for a large-n theory 
is clear. In addition, as the previous paragraph suggests, it is highly likely that results 
for even moderately large n may be accessible only by means of an asymptotic theory. 

Our numerical results, together with those of Lessen et al. (1974), will be presented 
in $4, where a comparison with the asymptotic theory will be made. 

4. Analysis for general unstable modes when n >> 1 

Problem (2.1) for the eigenvalue w may be written in the alternative form 

LIZ$ = K ( r ;  n ;  /3; w ; q )  $. (4.1) 
Here a 

P=,, $ = (  

(4 .3a)  

(4.3b) 
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(4.3c) 

and ,!? is assumed to be O(1).  

constant, and 
I n  the trailing-vortex case to be considered in detail, we take n positive, q a positive 

(4.4a) 
4r2 e-7' 

(1  +,!?2r2)2 
a(r )  = [q  + ~q -P+ (P + q m  r2+ ~3r41, 

4Pq( 1 -Pq) eC' (1  - ePr2) 
b(r )  = 

1 +p2r2  9 

(4.46) 

y ( r )  = n[pe-r2-qr-2(1 - e C 2  1I-w. (4.4c) 

Notice that, as r + co for the trailing vortex, a + 0, b + 0, and we confine our 
attention to  basic flows of this kind. Further, a(0 )  = b(0)  = 0 for the TV (4.4a, 6 ) :  
this holds quite generally for all kinematically possible basic flows. To complete the 
present reformulation of our problem, note that ( 2 . 2 )  implies boundary conditions 

$ ( O ) = O ,  $ + O  as r + m .  (4.5) 

Provided y (0 )  =k 0, K(r;  n;  /3; o; q )  is real and positive as r -+ co. If the real part 
of K is positive for all r ,  there can be no solution of the boundary-value problem. 
To see this let K = IKIei"(r). If ReK > 0 for all r ,  cos v > 6 > 0 for some value of 6. 
Write $ = R ( r )  eto(r), substitute into (4.1), multiply by exp ( - i U )  and take the real 
part: this yields 

D2R = [IKI cos v + (DU)2] R > (SlKl+ (DU)') R. ( 4 . 6 ~ )  

If R(0) = 0, then, by Sturmian theory, R cannot have a second zero. 
Thus, for a non-trivial solution to exist, ReK must vanish a t  somc point r = rl. 

Furthermore, since K + + 00 as r + 0 and K + n2 as r + 00, Re K must have an even 
number of roots on the real r-axis, and we may therefore assume t,hat there is at least 
a second point r = r2,  with 0 < r1 < r2 a t  which ReK vanishes. Since 

1 (1 + l0p2r2 - 3P4r4) ( 1  + ,!?2r2)-3 > (1  - 0-04n-2) for all n > 1 ,  

the real part of K can vanish only when 

< - (1  -0-24n-2) 

in an interval (rl, r 2 ) .  
Now consider the situation as n + + 00. Since 

(4.6b) 

y = nA-o,  

where A, like a and b, is independent of n, and, since wi is bounded (from $21, (4.6) 
requires yr = O(1) in (rl, r2) ,  and hence w, = O(n) .  For any unstable mode then, as 
n +  co we can neglect a/ny  in comparison with b / y 2 ,  and, in ( r l ,  r 2 ) ,  we must have 

Re (1  + b y p 2 )  < 0. (4.7) 

Since A is a smooth function of n,  the interval r 2 - r 1  must be small and vanishes in 
the limit n -+ co. 
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The requirement for a negative minimum of Re K ,  implied by ( 4 . 6 ~ )  et seq., leads 
us to search for stationary points of the complex function K. The strategy we adopt 
to solve the eigenvalue problem is to  focus attention upon the neighbourhood of such 
a stationary point, located a t  r = ro with rl < ro < r2.  In  this neighbourhood we write 

K = KO + K2(r - ro)2 + K ,  ( r  - r0)3 $- . . . , (4.8) 

where the K j  are independent of r .  On the assumption that the Kj are suitably ordered 
with n, the dominant part of $ must satisfy 

D2$ = [ K o + K 2 ( r - r o ) 2 ] $ ,  (4.9) 

and we must have $ -+ 0 as r leaves the immediate neighbourhood of r = ro in ordcr 
to match with the solution of (4.1) elsewhere (this may be represented, as n + 00, by 
a WKBJ approximation with no turning points). An exponentially growing 4 as 
Ir-r,] increases could not be so matched. Equation (4.9) is satisfied by Weber 
functions, and the requirement that  a solution exists is that  

Ko(K2)-i = - (2s- l ) ,  (4.10) 

where s is a positive integer. The Weber function corresponding to s = 1 is 

$ = exp [ - ~ & ( r - r O ) 2 ] ,  (4.1 1 )  

and the forms for other values of s follow by differentiattion. 
We are now in a position to  find the condition under which the neglect of K j ,  j > 2, 

is justified, and to set up a formal asymptotic expansion for # and w in descending 
powers of n. I n  addition to n @ 1 ,  the only requirement is that wi is not small. The 
neutral and nearly neutral modes for which wi is zero or small must be considered 
separately, and this we shall do in a subsequent paper. 

To lowest order in n-l, 
K=n2- (1 +s>. (4.12) 

Since r2 + r l  as n -+ 00, the stationary point r = r, to  a first approximation is a 

yo = -it$, ( 4 . 1 3 ~ )  

r2 

double zero of K.  From (4.12), it is defined by 

Dy(ro)  = nDA(ro) = - (4.13b) 

where yo = y(ro) and 6, = b(ro) .  The choice of sign in (4.13a) is made in view of the 
assumption wi > 0. Provided b, + 0, (4.13b) can be replaced by 

DA(ro) = 0. (4.13 c) 

From this point on, we only treat the TV example, but, the methodology is clearly 
general. For the TV, b vanishes only a t  r = 0 or CO, or when Pq = 1 ,  in which case 
b vanishes identically and the preceding discussion breaks down altogether. The cases 
r = 0 and r = co are not relevant, since we know that in both eases K is real and 
positive. Thus, excluding the case Pq = 1 ,  we may find ro in terms of /3 and q from 
(4.13c), which for the TV is 

exp rt = l + r i + - .  (4.14) 

This equation has no real (non-zero) roots i fP < &, and one real positive root ifP > $q, 
and further 6 vanishes a t  Pq = 1 .  Hence our interest is confined to  the interval 

q 

iq < P < l/q. 
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Near r = ro, 

where 
(4.150) 

yo = - n e x p  ( - r 3 v r ; + q - - , 9 ] - w ,  (4.15b) 

A, = 2 exp ( - r t ) u r : + q - 2 P ] .  ( 4 . 1 5 ~ )  

I n  view of (4.13a), we know that l + b o / y ;  is O(1). To determine its precise order, 
we expand K as indicated in (4.8) and find K,  = O(n3);  (4.10) therefore implies 
KO = O(n3). The series for yo is therefore expected to proceed in powers of n-4. 
Furthermore, the neighbourhood of ro in which the truncation in (4.9) is valid is 

r-ro = O(n-2). 

We are now prepared to develop a formal expansion in descending powers of n for 
the solution of (4.1). 

The expansion will satisfy a sequence of differential equations with complex 
coefficients. These are transformed to a sequence with real coefficients if we ex- 
tend the problem to the complex r-plane and deform the contour in the direction 
arg ( r  - ro) = -inn. By this deformation of contour, we do not pass over a zero of y since 
(4.13~) and (4 .15~)  show that this zero lies either in the first or third quadrant of 
the complex ( r -  ro)-plane. 

Furthermore, i t  turns out to be more convenient to expand in inverse powers of 
n exp (-&ri) rather than n. The reason is that if n = ip, a: = iA, where p ,  A are real 
and positive, the eigenvalue problem to determine u = iw in terms ofp, A is essentially 
real. In  particular, for large p the eigenfunctions and eigenvalues may be expanded 
in series of descending powers of p whose coefficients are real. Thus, proceeding 
formally, we let 1 ‘  p = neZn2, 

r = ro - p-27 = (ro + n-47 e - h i ) ,  

yo = - i  [r, +p-l rl +p-* rz +p-2-,] + ~(p), 
(4.16a) 

(4.16 b)  
where 

We define 
To = bi. 

1 +P2r2 
u(r) = ___ 

r2 ’ 

( 4 . 1 6 ~ )  

(4.17) 

and expand the functions a, b and u, in Taylor series about r = ro. Expressed in terms 
of T through (4.160), these may be written in the form 

where 

( 4 . 1 8 ~ )  

(4.18b) 

( 4 . 1 8 ~ )  

(4.18d) 

and the same notation is used for the a- and u-expansions. Following the same 
procedure with y ,  we have to order p-8: 

y = nA-w = yo+ip C Aj(- -r ) jp-z j ,  
j = 2  

(4.18e) 
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where now A 1 d k A ( r o )  
" - k !  drk ' 

If (4.16) and (4.18) are substituted into (4.1), we may arrange the result in the form 

9 - G 0 ( 7 )  $6 = ( G k ( 7 ) p p @ )  $6, 
dt2 k=l 

(4.19) 

where the Gk, k = 0, .  . . , 4, are polynomials in 7, even or odd if k is even or odd. 
The cigenfunction $6 is now itself expanded in a series in descending integer powers 

of p - i :  
$6 = # o +  p-ak$6k. 

k=l 

This produces a sequence of equations, the first of whicah is homogeneous, and thc 
sucwtding ones arc inhomogeneous, 

and we must have 
#j -0  as 171 -+ co. 

(4.20 a) 

(4.20b) 

(4.21) 

The important advantage of these formal expansions in descending powers of p is 
that all new quantities defined are real. For example, G k ( 7 )  is real, Ts is real, and y 
is purely imaginary (when p is treated as real). The coefficient Go is 

(4.22) 

and the operator appearing in (4.20) may be put in a cleaner form by scaling 7 as 

7 = Ax, (4.23) follows: 

(4.24) 
with @, 

(2A, a,)b ' 
A =  

Equation ( 4 . 2 0 ~ )  is then 
~ + [ r ~ ( - - ' - ~ 2 ] + ~  d2$6 4 4  = 0. 
d X 2  Agb 

In  order to ensure that $6 vanishes as 1x1 -+ co, 

for s = 1 ,  2 ,... (see (4.10)). When s = 1 ,  ( 4 . 2 0 ~ )  is 

(4.25) 

(4.26) 

Equation (4.26) provides thc leading term for the primlary unstable mode (s = l ) ,  
and (4.25) with s = 1 ,  together with (4.16b, c) provide an approximation, good to 
O ( n d ) ,  for the growth rate of unstable modes, i.e. 

W .  = b? - z/tn-& rl 
1 0  

(4.27) 
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Since Tz is real, the next term in the expansion of oi in inverse powers of n-4 is 
- T3 n-g2-4, and we shall now calculate it. First, we observe that the solution to (4.26) 

(4.28) 
is 

$o = exp ( -$x2), 

(4.29) and set 

then the $k are determined by 

#k(X) = $,W exp (- iX2),  $o(x) = 1,  

We can express the Cj as follows: 

(4.30) 

(4.31 a )  

(4.31 b )  

(4.31 c) 

where the gmn are all constants. Up to m = 3, these are all known in terms of uo, b,, 
b, and Az, except for g20, which depends upon the unknown Tz as well as these 
quantities. It is easy to see that an acceptable solution of (4.30) for odd k, k = 2m+ 1 
say, must always be of the form 

and for even k = 2m of the form 
zm 

(4.326) 

where the cpq are constants and the A ,  are scaling constants chosen for convenience. 
The @k for odd k, that is, the c ~ ~ + ~ , ~ ~ + ~ ,  are determined directly in terms of the 
coefficients of the relevant equation. By contrast, an acceptable solution can only 
be obtained for $zm when the coefficients gmn satisfy a compatibility condition which 
requires a linear combination of them to vanish. We show how the procedure works 
for k = 1 and 2. For k = 1 ,  

-- d2$l 2x- d$l = h3g1, 2, 

dx2 dx 
where 

-0 bl 
b0 

911 = --. 
Thus 

(4.33 a )  

(4.33 b )  

(4.33 c) 

and we take A, = h3 and c,, = -+gll. For k = 2. 

bt 
gzo+gzzx~+g24x4-- 

2-0& 

(4.34 b )  
Take 

$h2 = -h2(CzzX2+C24X4); 

12 E L M  126 
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then cZ2 and cZ4 must' satisfy three equations: 
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3A2 8c2, = __ 
2bt ' 

3A2 b ; a ,  
12c2, - 4c,, = 7- + 

b; 4b&' 

The overdetermined set (4.35) has a solution if and only if 

(4.35a) 

(4 .35b)  

(4.35 c )  

(4.36) 

Thus (4.36) produces a real solution for T2, which implies that  there is no correction 
to (4.27) to O(n-l) .  

Having found T2, we see that all coefficients gmn are known except for g4,, which 
must be deterrnincd by a compatibility condition entirely analogous to (4.35), (4.36). 
The constant g4, contains r3, the O(n-2) correction to the eigenvalue. The algebra 
required to get g4, and hence I?, is long but straightforward, and we only quote the 
end result in a schematic form. If we let 

A5 
$3 = -G (c31 + c33 x3 + c35 25), 

A 8  
$h4 = -T (c4,x2+c44x4+c46x6+c48x8), 

b; 
then compatibility for $4 requires 

1 2 1 0A2 4 9-24 c24 

g40 = -{ bt 

from which r3 is determined by 

(4.37) 

(4.38) 

All coefficients entering these formulas are defined in the appendix in terms of a,, 
bo, 61, bz, g o ,  gi, 12% and 113.  

The growth rate to  O(n-f) is 

(4.39) 

I n  addition, the real frequency w, is found from the re.al part of (4 .156)  to be 

w, = - ne-7; [pr: + p - p1 + n-1 r2 + nd I', + O(np2).  (4.40) 
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n Q ("iAS)max ("iN)max P A S  P N  ("iN -"iAS) n2 

1 032 0090 0.147 0257 0 3  0057 
2 0 7  0282 0314 0470 0 6  0128 
3 0.79 0343 0354 0504 0.57 0.099 
4 082 0372 0378 0513 054 0096 
5 083 0389 0391 0514 052 0050 
6 0.83 0399 040 1 051 1 053 0072 

TABLE 2. Comparison of maximum growth rate ( w ~ ~ ~ ) ~ ~ ~  calculated from the asymptotic theory 
holding n. and q fixed, and the maximum growth rates ( w ~ ~ ) ~ ~ ~  computed by Lessen et al. The 
maxima occur at the j3 = a/n values indicated for the two cases. The last column provides a partial 
check on the validity of the asymptotic theory and the numerical computations. 

9 ("iAS)max ("iN)max "I. AS ",N PAS P N  

0 8  037 1 0.378 - 1.171 -1.112 0505 0538 
1 .o 0356 0348 - 1.552 - 1.539 0602 0613 
1.2 0257 0238 - 1.998 -2'139 0679 0638 
1.3 0159 0152 -2'281 -2.514 0702 0638 

TABLE 3. Comparison of the results of the asymptotic theory for the maximum growth rate at fixed 
q for n = 4 with numerical solutions computed by the method of $3. Corresponding values of the 
real frequencies are listed, together with the normalized wavenumber at which ( o ~ ) ~ ~ ~  occurs. 
( )AS +--P asymptotic theory, ( )N t-+ numerical solutions. 

The results calculated from the asymptotic formulae (4.39) and (4.40) may be 
compared with numerical data for the principal mode accumulated by Lessen et al. 
(1974) and by ourselves. Table 2 compares the maximum growth rate found by Lessen 
et al. (1974) with the asymptotic results. I n  computing the asymptotic results, we 
used the same q and a (or /3) used by Lessen et al. (The search for the maximum wi 
over all a and q gives slightly different values when the asymptotic theory is used- this 
will be discussed below.) The columns marked wiAS give the maximum growth rate 
(over a) predicted by the asymptotic theory for the given values of n and q ,  while 
wiN give the numerical result obtained by Lessen et aE. (1974). 

Similar labels are used to indicate the wavenumber ratios /3 = a /n  a t  which these 
maxima are attained. The last column gives (wiN-wiAS)n2: the numbers in this 
column provide a good indication that our solution is in fact an asymptotic 
representation accurate to  O(n- f )  and an indication of the accuracy of the 
calculations. 

Table 3 compares the maximum (over a) value of wi for n = 4 and various q with 
numerical solutions that we have computed by the method of section 3. The 
corresponding values of w, are also compared. The agreement, like that shown in 
table 2, is good. 

We have also used the asymptotic theory to  compute the overall maximum growth 
rate, maximized over /3 and q holding n fixed. These results are displayed in table 4. 

The variations of wi and w, with normalized wavenumber /3 for n = 4 and several 
values of q are displayed in figures 2 and 3. For clarity, results that we have calculated 
from the differential equation are shown as solid lines, and results from the 
asymptotic theory are shown as broken lines. Our numerical results (solid lines) for 
n = 4 for the primary mode are also presented in figures 2 and 3. The tick on each 

12-2 
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n !? P (Wilrnax 4% 
3 0845 0.536 0346 -0284 
4 0.856 0.532 0373 - 0320 
5 0865 053 1 0.390 -0.336 
6 0.862 053 1 0.400 - 0343 
03 0870 0532 0459 -0363 

TABLE 4. The overall maximum growth rates, maximized overp and q for fixed n, and corresponding 
normalized frequencies, according to the asymptotic theory 

0.4 0.5[ 

0’5r 

p = a/n 

FIQURE 2(a ,  b) .  For caption see facing page. 
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(C) 

.-. 

p =  a/n  

FIGURE 2. Growth rates for TZ = 4 as functions of normalized wavenumber for the trailing vortex. 
-, results computed numerically by the method of $ 3 ;  ----, asymptotic theory of $4. The tick 
marks on the solid curves mark the wavenumber for which y,(O) = 0. (a )  q = 0.8; ( b )  p = 1.0; 
( c )  q = 1.2. 

curve of wi(p) in figure 2 marks the value of p = a/n,  say PI, a t  which yr = 0 a t  r = 0. 
For wavenumbers on the curve with p < PI, there is only one point, r = rcl, a t  which 
y,.(rc) = 0. As pincreases, rcl increases, and, when preachesp,, yr vanishes a t  a second 
point, rc2 = 0. As /3 increases beyond pl, both rcl and rc2 increase. We also display 
in figure 4 the results found by Lessen et al. (1974) for other values of n. The agreement 
between the numerical results and the asymptotic theory is good near the wavenumber 
corresponding to the maximum growth rate, but deteriorates rather quickly on either 
side. The present asymptotic analysis fails near p = +q, and also near pq = 1 .  Near 
/3 = iq, the failure can be traced to the approximation of y by a quadratic (r, = 0 
in (4.14) in this case, and A2 = 0), and in the case Pq-, 1 because b, 4 0 .  The 
expansion may be made uniform by attending to these causes of failure. The analysis 
required will be presented elsewhere; one result relevant to figures 2 4 ,  however, is 
worth mentioning now. We find that the effect of the nonuniformity near p = iq  is 
to decrease values of p corresponding to  a given wi by an amount proportional to 
n d  : for the values of n plotted in the figures the shift improves the agreement between 
the asymptotic theory and the numerically computed soluhions. 

For higher modes, the asymptotic formulae are the same to O(n-?), except that  rl 
has an additional multiple of 2s-  1 ,  and the formulas are expected to accurately 
represent only those higher modes for which (2s- 1)n-i is small. For relatively small 
n, as in Duck & Foster's (1980) results, this factor soon becomes significant, and we 
have therefore not attempted to compare the asymptotic theory to existing 
calculations of higher modes. 

5.  Discussion 
The numerical and analytical studies carried out to date on the stability charac- 

teristics of the trailing vortex may be summarized as follows. The vortex is certainly 
stable to axisymmetric disturbances (n = 0) if q = 0 (since b = 0 and a > 0), and if 
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0.2 0.3 0.4 0.5 0.6 0.7 0.8 

p = Iy/n 

FTQURE 3. Real frequencies of unstable modes corresponding to ( a ) ,  (6) and (c) of figure 2. 

q > 0.403 (Howard & Gupta 1962; see also (5.4) below); very likely i t  is stable to such 
disturbances for all q, but we have not seen an explicit demonstration. It is unstable 
to asymmetric disturbances with n < 0 if q < qo (qo z (4.08) and stable if q > po t  the 
most significant value of n being - 1 (Lessen et al. 1974). Of the disturbances with 
n > 0, those with n + 1 are the easiest to  study and for the most unstable of these 
the axial wavenumbers must satisfy 

This class of disturbance can however only exist if Nq < 1 / 2 ,  for if q > 2 / 2  this 
inequality leads to a contradiction. Hence we may certainly claim that a sufficient 
condition for the instability of this swirling flow is 

4 < 1/2. (5.2) 
This result may be generalized to include the general class of swirling flows 

considered in $2. The only general condition for instability so far proposed is that 

a 2 r - 3 ~ ( ~ 2 ~ 2 1 2 ) + 2 a n r - - 2 ~ ~ ~ - a [ a ~ w - n o ( ~ / ~ ) l 2  -= o (5.3) 
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FIGURE 4. For caption see p. 354. 

for some r > 0 (Howard & Gupta 1962) and this condition is necessary. It is useful 
for deciding stability when a,  n are given. For example, we have immediately that 
if the flow is unstable to symmetric disturbances (n  = 0) then 

but the condition is not sufficient, and, as the authors point out, (5 .3)  is satisfied for 
any V ,  W and n + 0 provided a is small enough. No suficient condit,ions for the 
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w1 O . 1  

0.3 

O . * I  0.1 

/r: 
I 

\ 
\ 
\ 
\ 
\ 
\ 

0.2 0.3 0.4 0.5 0.6 0.7 

0 = a/n 

FIGITRE 4. Solid lines show growth rates computed numerically by Lessen et al. (1974), dashed lines 
are from the asymptotic theory. (a )  q = 0.4, n = 4 ;  I@) 0.8, 5 ;  ( c )  0.8, 6. 

instability of a general columnar vortex are available in the literature. Ludwieg (1961) 
has proposed a necessary and sufficient condition for stability, namely, the flow is 
stable if and only if 

This condition emerged from his study of flow between concentric cylinders, but for 
the T V  flows this implies that  they are always stable. This condition is too severe. 
It was derived for the special case of a narrow annular gap, and its application to 
other geometries has no rational basis. 

We now proceed to formulate a sufficient condition for a columnar vortex of finite 
or infinite extent to be unstable. We first take a,  n large and look for a stationary 
value of y .  This occurs a t  a value of r that  satisfies 

The growth rate of this disturbance satisfies 

(5.7) 

apart from contributions that tend to zero as n -+ co and provided that the right-hand 
side is positive. On making use of (5.6) we deduce that 

(5.8) 
2 U r D V -  V 1 [ ~ l r 2 - ( D V ) 2 - ( D W ) 2 1  = W . i ( r ) ,  

W f  + 
( r D  V - V ) z  + r2(D W ) z  

Hence if the maximum growth rate for any disturbance is vM then 

WM 2 max omi ; (5.9) 
r 
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the equality sign appears to  hold for TV flows if q < 4 2 ,  but not generally (see below). 
An upper bound for B,,, has been provided by Howard & Gupta (1962), namely 

where the maximum is taken over all /3 and over all positive r .  The right-hand side 
of (5.10) is greater than wLi by 

3r2(DW)2(rDV- V ) 2  
4 [ ( r D V -  V ) 2  + [rDWI2] ’ 

(5.11) 

when p is defined by (5.6): this serves as a consistency check of (5.9). 
The result (5.9) provides us with our sufficient condition for the instability of 

columnar vortices, which may be stated as follows. Let V ,  W be smooth functions 
of r ,  but r = Vr be the circulation and let R = V / r  be the angular velocity. Then 
the flow must be unstable if 

V - [ - - + ( 3 2 ]  dR drdR d < 0 
dr dr dr 

(5.12) 

at  any point of the flow field. 
This condition is not necessary for instability. An example is provided by swirling 

Poiseuille flow (Maslowe 1974; Maslowe & Stewartson 1982). Here Y =  r ,  
W = c(1 - r 2 )  for 0 d r d 1, and this flow is unstable even though (5.12) is violated. 
When n is large there is a class of unstable wall modes with critical levels a t  distances 
O( l /n)  from the pipe wall at r = 1 .  It seems clear that these modes are consequences 
of the flow properties V + 0 and d W / d r  =k 0 a t  r = 1 .  They also show that the 
maximum growth rate does not occur in the limit n -+ co if c is large enough: further, 
in (5.9), the inequality sign is required since wmi = 0. 

Even for unbounded flows the criterion (5.12) is not necessary. The comparison 
between the numerical studies reported here and the asymptotic theory suggest that 
the maximum growth rate is achieved in the limit n --f co, and for large enough n 
the growth rate is a monotonic function of n for fixed p. This theory, however, only 
applies when (5.1) is satisfied, and we know that for finite n the range of values of 
/3 for which wi > 0 extends below tq. There is no evidence from the numerical studies 
that the range of /3 for unstable modes extends beyond /3 = l / q ,  and there are no 
eigenvalues of (2.1) if pq = 1 and q > g. For then b = 0, a > 0 and they are excluded 
by a well-known property of Rayleigh’s equation. 

An extension of the theory to include values of p < +q is clearly needed, and this 
will be the subject of a later paper. More germane to the present discussion is that  
a preliminary numerical study of the unstable modes near the likely position of the 
lower neutral mode has been carried out for n = 3, 4, 5, and very weakly unstable 
modes have been found in the range 1.42 d q < 1.58. The marginal character of the 
instability may be gauged by noting that a t  n = 4, q = 1.50 the most-unstable mode 
occurs a t  a = 2.32 and then w = -3*658+0*00152i. The value of ~ ~ ( 0 )  x -0.02 and 
the critical level is a t  r z 0.2. Further studies of these modes are needed before a 
definite conclusion can be drawn about the maximum value of q for which unstable 
modes can occur, but there is some evidence that, as q decreases from infinity, the 
first mode to become unstable is n = 1 .  In  their numerical study of viscous modes 
Lessen & Paillet (1974) found that the critical Reynolds number is least for the n = 1 
mode, and their conclusions arc confirmed by Stewartson (1982), using an extension 
of the present analysis. 
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